GUI Basics

This page lists the milestone requirements for Milestone 4 of the CC 410 Restaurant Project. Read the requirements carefully and discuss any questions with the instructors or TAs.

Purpose

The CC 410 Restaurant Project project for this semester is centered around building a point of sale (POS) system for a fictional restaurant named Starfleet Subs, based in the Star Trek universe.

The fourth milestone involves creating the various GUI windows and panels required for this project. The next milestone will involve adding functionality to these GUI elements beyond the ability to load different panels into the main window area.

General Requirements

This milestone must follow these professional coding standards:

  • All code must be object-oriented.
    • All executable code must be within a class
      • Python package files such as __init__.py and __main__.py are exempt.
    • Classes must be organized into packages based on common usage.
  • This project must include automation for compilation, unit testing, style checking, documentation generation, and execution.
    • Java: Use Gradle with the application plugin. The project should compile without errors.
    • Python: Use tox configured to use Python 3.6 and a requirements file to install libraries.
  • All code must properly compile or be interpreted.
    • Java: It must compile using Gradle.
    • Python: It must be interpreted using Python 3.6. Where specified, type hints should be included in the code, and all code should pass a strict Mypy type check with low imprecision percentage.
      • Classes in the starfleetsubs.gui package do not require type hints in Python, though you may continue to use them if they are helpful. Any errors from Mypy originating in these classes will be ignored.
  • Where specified, code should contain appropriate unit tests that achieve the specified level of code coverage.
    • Java: Use JUnit 5. You may choose to use Hamcrest for assertions.
    • Python: Use pytest. You may choose to use Hamcrest for assertions.
  • Where specified, code should contain appropriate documentation comments following the language’s style guide.
    • Java: Use javadoc to generate documentation.
    • Python: Use pdoc3 to generate documentation.
  • All code submitted must be free of style errors. We will be using the Google Style Guide for each language.
    • Java: Use Checkstyle 8.38+ and the Google Style Configuration.
      • You may modify the configuration to allow 4 space indentations instead of 2 space indentations.
    • Python: Use Flake8 with the flake8-docstrings and pep8-naming plugins. Code should conform to PEP 8 style with Google style docstrings.
  • Submissions to Canvas should be tagged GitHub releases that are numbered according to Semantic Versioning.

Assignment Requirements

This milestone should include the following features:

  • A starfleetsubs.Main class that properly loads and displays the program’s GUI.
  • A starfleetsubs.gui.MainWindow class that represents the main GUI window.
    • It should contain two panels - a main panel and a sidebar panel.
    • It should also contain two methods: one to load a particular panel into the main panel, and another to load the order screen into the main panel.
  • A starfleetsubs.gui.OrderPanel class to represent the main order screen panel.
    • It should contain three panels of buttons, one each for entrées, sides, and desserts. They may be automatically generated from the menu.
    • Each entrée will be listed once, but each side and drink will have 3 buttons - one for each size.
    • When clicked, those buttons should call a method to load the appropriate panel in to the main panel.
  • A starfleetsubs.gui.SidebarPanel class to represent the sidebar panel.
    • It should contain labels for order number, subtotal, tax, and total.
    • It should contain an “Edit” button, that does nothing when clicked.
    • It should also include a list box as a placeholder that can be used to keep track of the order. The list box should expand to fill all remaining vertical space in the window.
  • A panel class in the starfleetsubs.gui.entrees package for each entrée item.
    • It should include appropriate controls for modifying the ingredients, bread, and condiments.
    • When given an instance of the item as a parameter to the constructor, the values of the controls should be set to match the values in the instance.
    • It should include a “Save” button that, when clicked, will replace the main panel with the order screen.
    • You may include a parent EntreePanel class to reduce the amount of duplicate code.
  • A SINGLE panel class SidePanel in the starfleetsubs.gui.sides package.
    • It should include appropriate controls for modifying the size of the item.
    • When given an instance of the item as a parameter to the constructor, the values of the controls should be set to match the values in the instance.
    • It should include a “Save” button that, when clicked, will replace the main panel with the order screen.
    • Since each side only has a single option, this panel can be generalized to work with the parent Side class. However, when buttons on the OrderPanel are clicked, you’ll need to make sure an instance of the correct item is generated.
  • A panel class in the starfleetsubs.gui.drinks package for each drink item.
    • It should include appropriate controls for modifying the ingredients and size.
    • When given an instance of the item as a parameter to the constructor, the values of the controls should be set to match the values in the instance.
    • It should include a “Save” button that, when clicked, will replace the main panel with the order screen.
    • You may include a parent DrinkPanel class to reduce the amount of duplicate code.
  • Classes in the starfleetsubs.gui package do not require unit tests.
  • Classes in the starfleetsubs.gui package do not require type hints in Python, though you may continue to use them if they are helpful. Any errors from Mypy originating in these classes will be ignored.
  • Classes in the starfleetsubs.gui package do require all appropriate documentation comments, and must be free of style errors.
  • Update the UML Diagram Contained in this project to match the updated structure of the project.

You are welcome to add additional methods to the existing content in the starfleetsubs.data package. If so, make sure you include appropriate type checking and unit tests.

See below for a few sketches of what your GUI might look like.

Note

You are encouraged to use the code from Example 6 as a basis for this GUI, or you may create a different design. There are no set requirements for the design other than what is listed above, and the overall focus in this milestone is on simply getting the content on the screen and the ability to move between the various panels. You are welcome to spend additional time on the design if desired, but focus on getting the the content on the screen before doing any design work.

Time Requirements

Completing this project is estimated to require 3-8 hours.

Tip

A rough estimate for this milestone would be around 1500 lines of new code. It could vary widely based on how you choose to implement the various portions of the GUI. I was able to reuse many portions of the example project and expand on them to build this milestone. -Russ

Grading Rubric

This assignment will be graded based on the rubric below:

  • Main class - 2%
  • MainWindow class - 4%
  • SidebarPanel class - 4%
  • OrderPanel class - 20%
  • Entrée Panel classes - 40%
  • SidePanel class - 5%
  • Drink Panel classes - 15%
  • Updated UML diagram - 10%

The following deductions apply:

  • Any portion of the project which will not compile (Java), pass a strict type check (Python), or execute properly will be given a grade of 0.

This is not an exhaustive list of possible deductions. The instructors will strive to provide reasonable and fair grading, but we can’t predict all possible defects. It is up to the student to ensure that the project is complete and correct before submission.

Submission

Submit this assignment by creating a release on GitHub and uploading the release URL to the assignment on Canvas. You should not submit this Codio project or mark it as complete in Codio, in case you need to come back to it and make changes later.




GUI Sketches

Below are some GUI sketches to help you visualize one possible GUI for this project. You do not have to match this design at all, but this is at least a good starting point that you can reach based on what you learned in Example 6.

Note

I chose to increase the default size of my GUI to 1024x740 pixels, as that made the buttons fit better into the window. - Russ

Main Window

Main Window

Entree Panel

Main Window

Side Panel

Main Window

Drink Panel

Main Window

Helpful Hints & Code

Here are a couple of helpful pieces of code that you may wish to use in your project.

Java

In many cases, I found it easiest to create private or protected methods that will construct my GridBagConstraints objects, either within the class I was working in or in a parent class in the case of entrée and drink panels. Here’s an example:

/**
  * Construct a GridBagConstraints object.
  *
  * @param y the y coordinate of the object
  * @param start set anchor to LINE_START
  * @return the constructed GridBagConstraints object
  */
protected GridBagConstraints makeGbc(int y, boolean start) {
    GridBagConstraints gbc = new GridBagConstraints();
    gbc.gridx = 0;
    gbc.gridy = y;
    if (start) {
        gbc.anchor = GridBagConstraints.LINE_START;
    }
    gbc.insets = new Insets(2, 2, 2, 2);
    return gbc;
}

Then, when I want to place something in my layout using a GridBagConstraints object build from this method, I can use this:

this.add(check, this.makeGbc(i++, true));

The biggest benefit to this approach is that I can easily adjust all of the buttons by changing this one method. This is a great example of the “Don’t Repeat Yourself” or DRY principle.

Python

In many cases, I found it helpful to create a dictionary of settings that I’d like use with the grid() method, and then pass that entire dictionary as keyword arguments to the method. I usually did this either in a helper method within the class itself, or in a parent class in the case of entrée and drink panels. Here’s an example:

def _grid_dict(self, row: int, sticky: str) -> Mapping[str, Any]:
    """Create a dictionary of settings.

    Args:
        row: the row for the item
        sticky: the sticky settings
    """
    settings: Dict[str, Union[str, int]] = dict()
    settings["row"] = row
    settings["column"] = 1
    settings["padx"] = 2
    settings["pady"] = 2
    settings["sticky"] = sticky
    return settings

Then, when I want to place something in my layout using the grid() method with these settings, I can use this:

checkbutton.grid(**self._grid_dict(i, "W"))

Notice that I have to place two asterisks ** before the method. That tells Python to “unpack” the dictionary returned by that method so that it can be read as individual keyword parameters. A deeper explanation is found here.

The biggest benefit to this approach is that I can easily adjust all of the buttons by changing this one method. This is a great example of the “Don’t Repeat Yourself” or DRY principle.

I also had to tell Mypy to ignore the lambda expressions used in the OrderPanel class, as it cannot properly determine the type of the lambda. You can do this by adding a # type: ignore comment at the end of the offending line.

button = Button(master=side_frame, text=str(side),
                command=lambda x=str(side):  # type: ignore
                self.action_performed(x))

If anyone is able to figure out exactly how to properly get Mypy to handle this, there are major Bug Bounty points available!